10月15日是什么星座

文章
自由登入
化学元素周期表与可持续发展
斯蒂芬·A·马特琳

通讯作者

电子邮件地址:s.matlin@imperial.ac.uk

/global‐health‐innovation/about‐us/our‐people/our‐affiliates/

伦敦帝国学院全球卫生创新研究所,伦敦,SW7 2AZ UK

所有作者均为国际化学发展组织(IOCD)大会的成员。

伦敦帝国学院全球健康创新研究所,英国伦敦SW7 2AZ

E‐mail: s.matlin@imperial.ac.uk

/global‐health‐innovation/about‐us/our‐people/our‐affiliates/

搜索该作者的更多论文
戈弗丹·梅塔

海德拉巴大学化学学院,印度海得拉巴500046

所有作者均为国际化学发展组织(IOCD)大会的成员。搜索该作者的更多论文
亨宁·霍普夫

Institute of Organic Chemistry, Technische Universit?t Braunschweig, 38106 Braunschweig, Germany

所有作者均为国际化学发展组织(IOCD)大会的成员。搜索该作者的更多论文
阿兰·克里夫

那慕尔大学化学系,比利时那慕尔5000

巴基斯坦卡拉奇卡拉奇大学HEJ化学研究所

所有作者均为国际化学发展组织(IOCD)大会的成员。搜索该作者的更多论文
首次发表:2019年3月28日
引文:2

抽象

化学元素周期表是化学领域的核心,它也具有广泛的社会意义。它对我们星球上的元素存量的局限性以及对可持续发展构成威胁的过度和不适当利用的危险发出了强烈警告。

抽象

The 150th anniversary of Mendeleev's Periodic Table celebrates his success in systematically organising the known elements and predicting the existence of new ones. It is also an opportunity to remember that there are less than 100 stable elements on our planet and from the finite stocks of these we must derive all the materials that are required for life, well‐being and comfortable living.

The Table reminds us that there are less than 100 stable elements on our planet (as well as a couple of dozens of radioactive ones) from which to derive all the materials that are required for life and for well‐being and comfortable living. We need to ensure that the finite stocks of these are not excessively depleted or used in environmentally damaging ways. The designation by the UN of 2019 as the International Year of the Periodic Table of Chemical Elements1 提供了及时的机会来思考此警告并考虑如何最好地应对它提出的挑战。

国际年是俄罗斯化学家德米特里·门捷列夫(Dmitry Mendeleev(1834-1907))出版其元素周期表的150周年2 并赞扬这张出色成功的物质原子构成图的重要性和影响。这是分类方面的创新进步,有助于指导化学理解,并激发了对原子结构的理论理解。3 门捷列夫不是第一个在表格中发布已知元素列表的人,但是在并超越了先前的努力之后,他严格地将可用的周期性趋势知识应用到当时大约60种已知元素之间的关系中,以生成图表。在某些时候存在差距。门捷列夫从他的元素周期表中预测了当时未知的元素的性质,例如以间隙表示的镓(元素31),锗(32),dium(21)和tech(43),后来被发现,4 随后还有其他人,例如亨利·莫斯利(Henry Moseley)5 继续通过预测和填补空白来扩展元素周期表。

元素周期表结构的基本依据仅在多年后才出现,当时人们才了解了原子结构,并且原子序数(即核质子数,相当于元素数)而不是原子量成为了对其进行排序的公认依据。成员。新元素的发现和对原子结构的不断发展的理论理解最终导致在表中添加了新的镧系元素和act系元素,说明了分类系统适应的灵活性。6

元素周期表在显示已知元素(现在为118)时的显着地位反映了其基本构成原理实际上构成化学“标准模型”的程度。门德列夫1869年分类框架所代表的基本见解仍然完好无损,尽管新的在线互动方式7and three‐dimensional8, 9 演示文稿出现了。当前关于超原子的研究(具有其他元素的单个原子特性的原子团簇)10 导致提出了多维元素周期表以显示关系的建议。11

The last couple of dozens of elements added to the Periodic Table have been created synthetically by very high‐energy processes. They are all radioactive, decaying by fission into lighter elements with half‐lives ranging from fractions of a second (e.g. element 118, oganesson 294Og, has a half‐life of less than 1 millisecond) to millions of years (e.g. element 96, curium 247厘米)。预计不会在地球上发现任何新的稳定元素,12 although small amounts of new radioactive elements will continue be synthesised and “super‐heavy” ones may be formed in astronomical events such as supernovas and neutron star collisions. However, for everyday use, there will be no new stable building blocks from which to fashion the materials of our world. We must learn to make the best use we can of those elements we have, based on the understanding that geological resources are finite and not renewable.

在生物学,技术和/或经济上,绝大多数已知的稳定元素对我们至关重要。在人体中至少可以检测到痕量或更多的60种元素,其中大约28种(占元素周期表的四分之一)在人类的生命和健康中起着积极的积极作用。13, 14 While carbon, hydrogen, oxygen, nitrogen, phosphorus and calcium make up almost 99?% of the human body, molecules and complexes containing small amounts of the remaining elements utilised are involved in a wide range of metabolic functions, including as enzymes, catalysts and transporters (e.g. iron in haemoglobin, which carries oxygen and carbon dioxide). In addition to using the same major building blocks, other organisms may utilise some different elements in their biochemical processes (e.g. magnesium in chlorophyll, which fixes oxygen in plants).

地壳中元素周期表中的内容物的总丰度有很大的不同(图1),而且非常重要的是,元素的分布也有很大的变化。虽然其中一些最丰富的物质广泛分布在地球的大气,陆地和海洋中,但其他一些则集中在相对较少的位置。

图片
地壳中元素的丰富度(从皇家化学会网站上的数据中提取:周期表7).

自工业革命以来,开发开采矿产的技术一直是人类历史的不变特征,对不同元素的越来越多的使用已成为经济增长的主要驱动力,并且随着采矿和提炼的发展,利用迄今很少获得的某些元素的独特特性来提高技术能力。利用各种元素的进步提供了好处,例如在许多行业中使用了更坚固的磁体(例如,使用稀土金属钕和),更小的微处理器(例如,镓和锗),更高效的太阳能电池(例如,镓,铟和碲)和触摸屏(铟,铌)。许多现代设备使用非常广泛的元素和衍生自它们的化合物。全球最大的公司之一通用电气(General Electric)在其产品系列中使用了元素周期表中前82个元素中的72个元素,其中许多元素很少或很难获得。15 在另一个示例中,关于一种类型的产品,在普通的智能手机中至少可以找到70种简单或复合形式的元素。16

人们越来越多地意识到具有特殊用途和重要用途的某些元素的供应有限,这反映了用以描述它们以及其来源的矿石的术语的泛滥,包括“网关矿物”,“关键元素”和“濒危元素” 。17, 18 一些国家采取的政策考虑到了其中一些对其本国和经济安全的高度战略重要性。19, 20

While increasing attention is rightly being given to the risks of material scarcity, a parallel problem of considerable urgency concerns the impact of massively expanding use of relatively abundant elements. An important approach to framing this issue has been the development of the concept of planetary boundaries, first advanced by Rockstr?m, Steffen and colleagues in 2009 and further elaborated in 2015.21, 22 Boundaries that relate to nine Earth system processes of critical importance for sustainable development have been proposed, and in most cases the work has already defined a quantitative “safe operating space for humanity”, a threshold region in a “zone of uncertainty”, where there is increasing risk, and beyond this a “zone of high risk” of major and long‐term damage to the planetary environment (Table 1).

表格1。 行星边界(参考资料22)
图片

Three of the boundaries concern biogeochemical flows of key elements that are relatively abundant in either the Earth's crust (carbon: 0.18?%; phosphorus: 0.1?%) or atmosphere (nitrogen: 0.002?% in the crust and 78?% of the atmosphere). The key problem in each case relates to the extent to which industrial uses are contributing to major environmental changes. For example:

● Generation of greenhouse gases from combustion of carbon‐rich materials to produce energy is contributing to climate change. The atmospheric concentration of CO2 is already well into the threshold region where there is an increasing risk of global warming. Having increased by about 40?% globally since the Industrial Revolution, the atmospheric CO2 扁平化23 在2014–2016年期间,由于石油和天然气的使用增加,在2017–2018年再次上升。24

● The Haber–Bosch process for the fixation of atmospheric nitrogen as ammonia and the production of ammonium nitrate and other N‐containing fertilisers was extremely important in helping to raise agricultural yields and feed the burgeoning world population in the 20th century.25 但是,据估计,氮氧化物和硝酸盐对地球大气和水的污染已超过了反应性氮物种的行星边界约两倍半。

● In parallel with the increased use of nitrogen, there has been a complementary increase in the use of phosphorus, particularly in phosphate fertilisers, with a concomitant rise in pollution of water due to agricultural run‐off. At the present scale of use, it is predicted there will be a shortage of phosphates in the next 50 to 150 years and the need for “phosphorus stewardship” has been emphasised.26

元素周期表中关于行星边界和环境科学的预测很明确。需要改变方法,必须更好地管理关键要素,着眼于保存和回收稀有资源的可用供应,并在可能的情况下寻找新的替代品。27 The changes must also involve finding ways to reduce the use of more abundant elements to a minimum, while much more consideration must be given to the entire cycle of use, repair, upgrading, repurposing, by‐products, waste and disposal, in order to prevent damage to the planetary environment. Manufacturers might consider emulating Apple's 2017 pledge to make its smartphones entirely from recycled material.28 灵感可能来自于决策29 由东京奥林匹克运动会和残奥会组委会制造,大约5,000枚金牌,银牌和铜牌在制造2020年东京奥运会时仅用废旧手机等消费类电子产品制造,然后利用再生金属生产了2012年伦敦奥运会的奖牌以及2016年里约热内卢运动会。

Recycling and re‐use of available element stocks must be an essential approach to consider – but while human creativity and ingenuity will undoubtedly improve capacities to achieve this, it will not always be technically or economically feasible and, when it is, it will require major revision of many industrial processes and production models. Consequently, the limited planetary stock of some elements may ultimately become widely dispersed in non‐recoverable forms. A “systems thinking” approach is vital,30 在其中将科学,技术,经济和环境影响因素综合考虑。

要确保地球的可持续发展,我们迫切需要学习如何更好地管理元素周期表中库存的基本建筑材料中有限的地球资源。我们需要提高我们对它们进行耕种的能力,并更加有效地使用它们。保护库存和供应,并提高了对我们如何利用它们的不利后果的认识。作为原子和分子科学以及门捷列夫元素周期表的继承者,化学对于使这种更好的管理成为可能至关重要。

致谢

本文是在2018年由国际化学科学发展组织(IOCD)在那慕尔举行的研讨会上撰写的,该研讨会得到了Gesellschaft Deutscher Chemiker和皇家化学学会的支持。我们感谢Johan Yans(那慕尔大学)提供了图1。

    传记

    • 图片

      斯蒂芬·A·马特琳

    • 图片

      戈弗丹·梅塔

    • 图片

      亨宁·霍普夫

    • 图片

      阿兰·克里夫

      根据CrossRef引用的次数: 2

      • 物质循环和化学科学作为可持续的垃圾后时代的关键推动力,可持续化学和药学,10.1016/j.scp.2020.100312, 17, (100312), (2020).
      • 在聚丙烯腈基碳纤维中插入钾,以进行多功能的能量存储,变形和应变感应,Carbon, 10.1016/j.carbon.2020.09.042, (2020).
      网站地图